

EMC TEST REPORT

ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-17 V3.2.4 (2020-09)

Product: EcoFlow STREAM AC Pro

Trade Mark: EF ECOFLOW, ECOFLOW

Model Name: EF-EA-AC-P2K-1200

Family Model: EF-EA-AC-P2K-800, EF-EA-AC-P2K-600.

EF-EA-AC-2K-800

Report No.: S25022800704001

Prepared for

EcoFlow Inc.

RM 401, Plant #1, Runheng Industrial Zone, Fuyuanyi Road, Zhancheng Community, Fuhai Street, Bao'anDistrict, ShenzhenCity, Guangdong Province, P.R.China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-23200050 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name EcoFlow Inc.

Address RM 401, Plant #1, Runheng Industrial Zone, Fuyuanyi Road,

Zhancheng Community, Fuhai Street, Bao'an District, ShenzhenCity, Guangdong Province, P.R.China

Manufacturer's Name EcoFlow Inc.

RM 401, Plant #1, Runheng Industrial Zone, Fuyuanyi Road, Address

Zhancheng Community, Fuhai Street, Bao'an District,

ShenzhenCity, Guangdong Province, P.R.China

Product description

Product name EcoFlow STREAM AC Pro

Trademark EF ECOFLOW, ECOFLOW

Model Name EF-EA-AC-P2K-1200

Family Model EF-EA-AC-P2K-800, EF-EA-AC-P2K-600, EF-EA-AC-2K-800

ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-17 V3.2.4 (2020-09)

This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of (Electromagnetic Compatibility Regulations 2016) requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Feb. 13, 2025 ~ Feb. 28, 2025

Date of Issue..... Feb. 28, 2025

Test Result.....: Pass

Prepared

(Project Engineer)

Reviewed

Sky Zhang

(Supervisor)

Approved .

Alex Li

(Manager)

Report No.: S25022800704001

36

Table of Contents Page 1. TEST SUMMARY 5 1.1 TEST FACILITY 7 1.2 MEASUREMENT UNCERTAINTY 7 2. GENERAL INFORMATION 9 2.1 DESCRIPTION OF TEST MODES 10 2.2 DESCRIPTION OF TEST SETUP 11 2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL 12 2.4 MEASUREMENT INSTRUMENTS LIST 13 3. EMC EMISSION TEST 18 3.1 CONDUCTED EMISSION MEASUREMENT 18 3.1.1 POWER LINE CONDUCTED EMISSION 18 3.1.2 TELECOMMUNICATION PORT CONDUCTED EMISSION(VOLTAGE LIMITS) 19 3.1.3 TEST PROCEDURE 3.1.4 TEST SETUP 21 3.1.5 EUT OPERATING CONDITIONS 21 3.1.6 TEST RESULTS 22 3.2 RADIATED EMISSION MEASUREMENT 24 3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 24 3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT 25 3.2.3 TEST PROCEDURE 25 3.2.4 TEST SETUP 26 3.2.5 EUT OPERATING CONDITIONS 26 3.2.6 TEST RESULTS (30-1000MHz) 27 3.2.7 TEST RESULTS(1000-6000MHz) 29 3.3 HARMONICS CURRENT 30 3.3.1 LIMITS OF HARMONICS CURRENT 30 3.3.2 TEST PROCEDURE 31 3.3.3 EUT OPERATING CONDITIONS 31 3.3.4 TEST SETUP 31 3.3.5 TEST RESULTS 32 3.4 VOLTAGE FLUCTUATION AND FLICKERS 33 3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS 33 3.4.2 TEST PROCEDURE 33 3.4.3 EUT OPERATING CONDITIONS 33 3.4.4 TEST SETUP 34 4. EMC IMMUNITY TEST 36 4.1 GENERAL PERFORMANCE CRITERIA 36

4.1.1 PERFORMANCE CRITERIA

60

Table of Contents Page 4.2 GENERAL PERFORMANCE CRITERIA TEST SETUP 38 4.3 ESD TESTING 39 4.3.1 TEST SPECIFICATION 39 4.3.2 TEST PROCEDURE 39 4.3.3 TEST SETUP 40 4.3.4 TEST RESULTS 41 4.4 RS TESTING 43 4.4.1 TEST SPECIFICATION 43 4.4.2 TEST PROCEDURE 43 4.4.3 TEST SETUP 44 4.4.4 TEST RESULTS 45 4.5 EFT/BURST TESTING 47 4.5.1 TEST SPECIFICATION 47 4.5.2 TEST PROCEDURE 47 4.5.3 TEST SETUP 48 4.5.4 TEST RESULTS 49 4.6 SURGE TESTING 51 4.6.1 TEST SPECIFICATION 51 4.6.2 TEST PROCEDURE 51 4.6.3 TEST SETUP 52 4.6.4 TEST RESULTS 53 4.7 INJECTION CURRENT TESTING 55 4.7.1 TEST SPECIFICATION 55 4.7.2 TEST PROCEDURE 55 4.7.3 TEST SETUP 55 4.7.4 TEST RESULTS 57 4.8 VOLTAGE INTERRUPTION/DIPS TESTING 58 4.8.1 TEST SPECIFICATION 58 4.8.2 TEST PROCEDURE 58 4.8.3 TEST SETUP 58 4.8.4 TEST RESULTS 59

5. EUT TEST PHOTO

1. TEST SUMMARY

Test procedures according to the technical standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-17 V3.2.4 (2020-09)

		_			
⊢n	ИC	-n	nic	CIA	۱n
			шъ	316	711

Standard	Test Item	Limit	Judgment	Remar k
	Conducted Emission On AC Port150kHz to 30MHz	Class B	PASS	
	Disturbance Voltage at The Antenna Terminals(30MHz To 2150MHz)		N/A	
EN 55032:2015+A1: 2020	Wanted signal and disturbance voltage at the RF output terminals (30MHz To 2150MHz)		N/A	
	Radiated Emission 30MHz to 1000MHz	Class B	PASS	
	Radiated Emission 1GHz to 6GHz	Class B	PASS	
EN IEC 61000-3-2:2019+A1: 2021	Harmonic Current Emission	Class A	PASS	NOTE (6)
EN 61000-3-3:2013+A2: 2021	Voltage Fluctuations & Flicker		PASS	NOTE (6

EMC Immunity

Section EN 55035:2017+A11:2020	Test Item	Performance Criteria	Judgment	Remark
EN 61000-4-2:2009	Electrostatic Discharge	В	PASS	
EN 61000-4-3:2006+A1:2008+A2: 2010	RF electromagnetic field	А	PASS	NOTE (4)
EN 61000-4-4:2012	Fast transients	В	PASS	NOTE (6
EN 61000-4-5:2014+ A1:2017	Surges	В	PASS	NOTE (6
EN 61000-4-6:2014	Continuous radio frequency disturbances or Injected Current	А	PASS	NOTE (6
EN 61000-4-8:2010	Power Frequency Magnetic Field	А	N/A	NOTE (3)
EN 61000-4-11:2004	Volt. Interruptions Volt. Dips	B / C / C NOTE (2)	PASS	NOTE (6

NOTE:

- (1)"N/A"denotes test is not applicable in this Test Report
- (2) Voltage dip: 100% reduction Performance Criteria B

Voltage dip: 30% reduction - Performance Criteria C

Voltage Interruption: 100% Interruption – Performance Criteria C

- (3)Applicable only to equipment containing devices intrinsically susceptible to magnetic fields, suchas CRTmonitors, Hall effect elements, electro-dynamic microphones, magnetic field sensors oraudio frequency transformers.
- (4) The test site is located in site B.
- (5) For client's request and manual description, the test will not be executed.
- (6) The product is powered by a USB port

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add. (Site A): No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Add.(Site B): Building 30, Furong Third Road, Furong Industrial Zone, Xinqiao Street, Bao 'an District, Shenzhen, Guangdong, China

CNAS-Lab. : The Certificate Registration Number is L5516 IC-Registration : The Certificate Registration Number is 9270A

FCC- Accredited : Test Firm Registration Number: 463705

Designation Number: CN1184

A2LA-Lab. : The Certificate Registration Number is 4298.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Measurement Frequency Range	К	U(dB)
AC Mains Conducted Emission	0.009kHz ~ 0.15MHz	2	2.66
AC Mains Conducted Emission	0.15MHz ~ 30MHz	2	2.80
Telecom Conducted Emission (Cat 3)	0.15MHz ~ 30MHz	2	2.40
Telecom Conducted Emission (Cat 5)	0.15MHz ~ 30MHz	2	2.58
Radiated Emission	30MHz ~ 1000MHz	2	2.64
Radiated Emission	1000MHz ~ 6000MHz	2	2.40
Radiated Emission	6000MHz ~ 18000MHz	2	2.52

Revision History

Report No.	Version	Description	Issued Date
S25022800704001	Rev.01	Initial issue of report	Feb. 28, 2025

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	EcoFlow STREAM AC Pro
Trade Mark	EF ECOFLOW, ECOFLOW
Model Name	EF-EA-AC-P2K-1200
Family Model	EF-EA-AC-P2K-800, EF-EA-AC-P2K-600, EF-EA-AC-2K-800
Model Difference	All models are the same circuit and RF module, except model's name, power.
Frequency Bands:	⊠BLE: 2402~2480 MHz ⊠2.4G WIFI: 802.11b/g/n/ax (20MHz): 2412~2472MHz 802.11n (40MHz):2422~2462MHz
Modulation Mode:	 ☑BLE: GFSK ☑IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) ☑IEEE 802.11g/n (HT20/HT40): OFDM (64QAM, 16QAM, QPSK, BPSK) ☑IEEE 802.11ax(HT20): OFDMA(QPSK,BPSK,16QAM, 64QAM,256QAM,1024QAM)
Adapter	N/A
Battery	DC 19.2V, 1.92KWh
Power Rating	 PV input: 4 channels 15-60Vdc, single channel 16A Max, 500W Max. 4 channels totaling 2000W Max. AC parallel interface: 1 channel 184-264Vac, 10A, 2300W; AC grid connection interface: 1 channel Grid connected output: 184-264Vac, 3.5A, 800W;
	Grid input: 184-264Vac, 10A, 2300W; 4. AC load output: 2 channels, with a total output of 2300W for both channels. If one channel carries 2300W, the other channel cannot carry the load; Inverter output: 184-264Vac, 5.3A, 1200W; Bypass output: 184-264Vac, 10A, 2300W
Connecting I/O Port(s)	4. AC load output: 2 channels, with a total output of 2300W for both channels. If one channel carries 2300W, the other channel cannot carry the load;
Connecting I/O Port(s) Antenna:	4. AC load output: 2 channels, with a total output of 2300W for both channels. If one channel carries 2300W, the other channel cannot carry the load; Inverter output: 184-264Vac, 5.3A, 1200W; Bypass output: 184-264Vac, 10A, 2300W
	4. AC load output: 2 channels, with a total output of 2300W for both channels. If one channel carries 2300W, the other channel cannot carry the load; Inverter output: 184-264Vac, 5.3A, 1200W; Bypass output: 184-264Vac, 10A, 2300W Please refer to the User's Manual
Antenna:	4. AC load output: 2 channels, with a total output of 2300W for both channels. If one channel carries 2300W, the other channel cannot carry the load; Inverter output: 184-264Vac, 5.3A, 1200W; Bypass output: 184-264Vac, 10A, 2300W Please refer to the User's Manual PCB Antenna

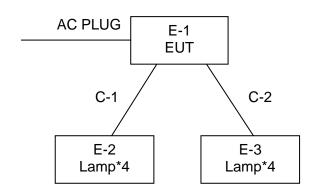
2.1 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

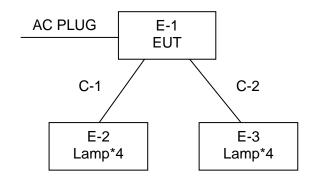
Pretest Mode	Description	
Mode 1	Battery charge & AC On Grid+Load	
Mode 2	Battery discharge & AC On Grid+Load	
Mode 3	Standby	
Mode 4	BLE	
Mode 5	2.4G WIFI Link	

For Conducted Test				
Final Test Mode Description				
Mode 1 Battery charge & AC On Grid+Load				

For Radiated Test			
Final Test Mode Description			
Mode 1	Battery charge & AC On Grid+Load		


For EMS Test			
Pretest Mode Description			
Mode 1	Battery charge & AC On Grid+Load		
Mode 2 Battery discharge & AC On Grid+Load			
Mode 3	Standby		
Mode 4	BLE		
Mode 5	2.4G WIFI Link		

NOTE: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, and its test data was showed.



2.2DESCRIPTION OF TEST SETUP

CE:

RE:

2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	EcoFlow STREAM AC Pro	EF-EA-AC-P2K-12 00	N/A	EUT
E-2	Lamp	N/A	N/A	Peripherals
E-3	Lamp	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Note
C-1	Power Cable	NO	NO	
C-2	Power Cable	NO	NO	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

2.4MEASUREMENT INSTRUMENTS LIST

2.4.1CONDUCTED EMISSION

	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
	1	Test Cable	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
_	2	Test Cable	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
	3	Low Frequency Cable	N/A	R-03	N/A	2022.04.25	2025.04.24	3 year
	4	Pulse Limiter	SCHWARZBE CK	VTSD 9561F	9716	2022.06.17	2025.06.16	3 year
	5	50Ω Switch	ANRITSU CORP	MP59B	620098370 4	2024.04.26	2027.04.25	3 year
	6	EMI Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
	7	Unversal radio communication tester	R&S	CMU200	1100.008.0	2024.05.30	2025.05.29	1 year
	8	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2024.05.30	2025.05.29	1 year
	9	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
	10	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year

2.4.2RADIATED TEST SITE

	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
	1	Antenna Mast	EM	SC100_1	N/A	N/A	N/A	N/A
	2	Turn Table	EM	SC100	060531	N/A	N/A	N/A
	3	EMI Test Receiver	R&S	ESPI3	101417	2024.05.15	2025.05.14	1 year
	4	50Ω Switch	Anritsu Corp	MP59B	620098370 5	2024.04.26	2027.04.25	3 year
	5	Spectrum Analyzer	Aglient	E4440A	MY410001 30	2024.04.26	2025.04.25	1 year
	6	Unversal radio communication tester	R&S	CMU200	1100.008.0 2	2024.05.30	2025.05.29	1 year
	7	Wideband Radio Communication Tester Specifications	pand lio lication R&S er	CMW500	148500	2024.05.30	2025.05.29	1 year
	8	Test Cable	Talent Microwave	A81-NMNM -8.5M	22084897	2024.04.26	2027.04.25	3 year
	9	Test Cable	Talent Microwave	A81-NMNM -2M	22084894	2024.04.26	2027.04.25	3 year
	10	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
	11	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2024.05.12	2027.05.11	3 year
	12	Log-Periodic Antenna	SCHWARZBE CK	VULB 9162	675	2024.05.18	2025.05.17	1 year
	13	Amplifier	EMC	EMC05183 5SE	980246	2024.04.25	2025.04.24	1 year

2.4.3HARMONICS AND FILCK

2.4.31 IANMONIOS AND FILCIN							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Power analyzer	YOKOGAWA	WT3000	91R11253 9	2024.05.15	2025.05.14	1 year
2	AC current probe	CHAUVINAR NOUX	C112	111659	2024.10.26	2025.10.25	1 year
3	AC current probe	CHAUVINAR NOUX	C112	111647	2024.10.26	2025.10.25	1 year
4	AC current probe	CHAUVINAR NOUX	C112	111649	2024.10.26	2025.10.25	1 year
5	Array power grid simulator	ACTIONPOW ER	AGS-30-70 05	CS240404 48	2024.05.15	2025.05.14	1 year
6	Unversal radio communication tester	R&S	CMU200	1100.008.0	2024.05.30	2025.05.29	1 year
7	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2024.05.30	2025.05.29	1 year

2<u>.4.4ESD</u>

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Unversal radio communication tester	R&S	CMU200	1100.008.0	2024.05.30	2025.05.29	1 year
2	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2024.05.30	2025.05.29	1 year
3	ESD Generator	EVERFINE	EMS61000- 2A	P615727T A1421113	2024.05.27	2025.05.26	1 year

2.4.5RS

2.4.510							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Unversal radio communication tester	R&S	CMU200	1100.008.0 2	2024.05.30	2025.05.29	1 year
2	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2024.05.30	2025.05.29	1 year
3	Audio Power Amplifier	Brüel & Kjær	4602B	2185667	2024.05.30	2025.05.29	1 year
4	Mouth Simulator	Brüel & Kjær	2669	2143265	2024.05.30	2025.05.29	1 year
5	Sound Calibrator	Brüel & Kjær	4185	2194825	2024.05.30	2025.05.29	1 year
6	1/2" Pressure- field Microphone	Brüel & Kjær	735	2641678	2024.05.30	2025.05.29	1 year
7	Telephone Test Head	Brüel & Kjær	4185	2631728	2024.05.30	2025.05.29	1 year

8 **UPV** Audio Analyzer R&S 100419 2024.05.30 2025.05.29 1 year Ear Simulator for 9 Brüel & Kjær 4185 2553612 2024.03.12 2025.03.11 1 year Telephonometr 3142E(Fegu ency range 10 Bilog Antenna 00214344 2024.06.01 2027.05.30 **ETS** 3 year 30MHz to 6 GHz) Broadband 11 AR 60S1G6 0350414 2024.04.26 2025.04.25 1 year Amplifier MXG Vector MY470703 12 Signal Agilent N5182A 2024.05.30 2025.05.29 1 year 17 Generator NTWPA-00 Power Amplifier 17063153 2024.04.26 2025.04.25 13 rflight 1 year 810200 **Power Amplifier** AR 25S1G4A 14 308598 2024.04.26 2025.04.25 1 year MY451025 **Power Meter** E4419B 2024.04.25 15 Agilent 2025.04.24 1 year 38 MY414956 16 Power Sensor Agilent E9301A 2024.04.25 2025.04.24 1 year 44 US392121 Power Sensor 17 Agilent E9301A 2024.04.25 2025.04.24 1 year 48 **ESG** Vetctor MY450933 2025.04.25 18 Agilent E4438C 2024.04.26 1 year Signal 47 Generator

2.4.6SURGE, EFT/BURST, VOLTAGE INTERRUPTION/DIPS

	4.000 NOE, ET 1/BONOT, VOEI/NOE INTENNED THON/BIT O								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Surge Generator	EVERFINE	EMS61000- 5A-V1	1101002	2024.04.26	2025.04.25	1 year		
2	Array power grid simulator	ACTIONPOW ER	AGS-30-70 05	CS240404 48	2024.05.15	2025.05.14	1 year		
3	EFT/B Generator	EVERFINE	EMS61000- 4A-V2	1012005	2024.04.26	2025.04.25	1 year		
4	Unversal radio communication tester	R&S	CMU200	1100.008.0	2024.05.30	2025.05.29	1 year		
5	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2024.05.30	2025.05.29	1 year		

2.4.7INJECTION CURRENT

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Attenuator	TESEQ	ATN 6075	38411	N/A	N/A	N/A
2	RF Cable	TESEQ	RF Cable	N/A	N/A	N/A	N/A
3	Signal Generator	R&S	SML03	100954	2024.05.30	2025.05.29	1 year
4	Power Amplifier	TESEQ	CBA 230M-080	T44376	2024.04.26	2025.04.25	1 year
5	EM Clamp	FCC	F-203I-23M M	504	2024.04.26	2025.04.25	1 year
6	Audio Power Amplifier	Brüel & Kjær	4602B	2185667	2024.03.12	2025.03.11	1 year
7	Mouth Simulator	Brüel & Kjær	2669	2143265	2024.09.13	2025.09.12	1 year
8	Sound Calibrator	Brüel & Kjær	4185	2194825	2024.09.14	2025.09.13	1 year
9	1/2" Pressure- field Microphone	Brüel & Kjær	735	2641678	2024.09.14	2025.09.13	1 year
10	Audio Analyzer	R&S	UPV	100419	2024.09.14	2025.09.13	1 year
11	Ear Simulator for Telephonometr y	Brüel & Kjær	4185	2553612	2024.05.30	2025.05.29	1 year
12	Telephone Test Head	Brüel & Kjær	4185	2631728	2024.05.30	2025.05.29	1 year
13	Unversal radio communication tester	R&S	CMU200	1100.008.0 2	2024.05.30	2025.05.29	1 year
14	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2024.05.30	2025.05.29	1 year
15	Coupling and Decoupling Network	SCHWARZBE CK	CDN M5PE 32A 1000V	N/A	2024.04.26	2026.04.25	1 year
16	Attenuator	Jingtenghong	JTH-SJ-100 W-6dB	100145143 000686	2024.04.26	2027.04.25	3 year
17	EM Clamp	TESEQ	KEMZ 801A	47860	2024.04.26	2026.04.25	1 year

Measurement Software

EMI

Item	Manufacturer	Software Name	Software Version	Description
1	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
2	2 Farad EZ-EMC_CE		AIT-03A	AC Conducted Test
3	Everfine	HFMSuite	V2.00.131	Harmonic Current and Voltage Fluctuations&FlickerTest

EMS

٠.													
	Item	Manufacturer	Software Name	Software Version	Description								
	1	raditeq	RadiMation	2023.1.3	RF Electromagnetic Field Test								
	2	raditeq	RadiMation	2023.1.3	Injected Current Test								

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT 3.1.1 POWER LINE CONDUCTED EMISSION

(Frequency Range 150kHz-30MHz)

Table A.8 - Requirements for conducted emissions from the AC mains power ports of Class A equipment

1. AC mains power ports (3.1.1)									
Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class A limits dB(μV)					
A8.1			Quasi Peak / 9 kHz	79					
	0,5 - 30	AMN	Quasi Peak / 9 kHz	73					
A8.2	0,15 - 0,5	AMNI	Averes / O kHz	66					
	0,5 - 30	AMN	Average / 9 kHz	60					

Table A.9 - Requirements for conducted emissions from the AC mains power ports of Class B equipment

I. AC mai	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class B limits dB(μV)
A9.1	0,15 - 0,5			66 – 56
	0,5 - 5	AMN	Quasi Peak / 9 kHz	56
	5 – 30			60
A9.2	0,15 - 0,5			56 – 46
	0,5 - 5	AMN	Average / 9 kHz	46
	5 – 30			50

Note:

- (1) The tighter limit applies at the band edges.
- The limit of " * " marked band means the limitation decreases linearly with the (2) logarithm of the frequency in the range.

3.1.2TELECOMMUNICATION PORT CONDUCTED EMISSION(VOLTAGE LIMITS) (Frequency Range 150kHz-30MHz)

Table A.10 - Requirements for asymmetric mode conducted emissions from Class A equipment

Applicable to

- 1. wired network ports (3.1.30) 2. optical fibre ports (3.1.24) with metallic shield or tension members 3. antenna ports (3.1.3)

Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class A voltage limits dB(µV)	Class A current limits dB(µA)	
A10.1	0,15 - 0,5	AAN	Oussi Bask / O kHz	97 – 87		
	0,5 – 30	AAN	Quasi Peak / 9 kHz	87	2/0	
	0,15 - 0,5	AAN	Averege / O kH=	84 – 74	n/a	
	0,5 – 30	AAN	Average / 9 kHz	74		
A10.2	0,15 - 0,5	CVP	Quasi Peak / 9 kHz	97 – 87	53 – 43	
	0,5 – 30	and current probe	Quasi Peak / 9 kHZ	87	43	
	0,15 - 0,5 CVP	CVP	A	84 – 74	40 – 30	
	0,5 - 30	and current probe	Average / 9 kHz	74	30	
A10.3	0,15 - 0,5	Current Probe	Quasi Peak / 9 kHz		53 – 43	
	0,5 – 30	Current Probe	Quasi Peak / 9 km2	,	43	
	0,15 - 0,5	0 15 1	Averes / O kH=	- n/a	40 – 30	
	0,5 – 30	Current Probe	Average / 9 kHz		30	

The choice of coupling device and measurement procedure is defined in Annex C.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.8.

The test shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

Table A.12 – Requirements for conducted differential voltage emissions from Class B equipment

Applicable to

- 1. TV broadcast receiver tuner ports (3.1.8) with an accessible connector
- 2. RF modulator output ports (3.1.27)
- 3. FM broadcast receiver tuner ports (3.1.8) with an accessible connector

Table clause	Frequency range	Detector type/ bandwidth		Class B lim dB(μV) 75 g		Applicability
	MHz		Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Ougoi Book/	46	54	54	See b)
A12.3	30 – 300	Quasi Peak/ 120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150			n/a	54	

- Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.
- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.

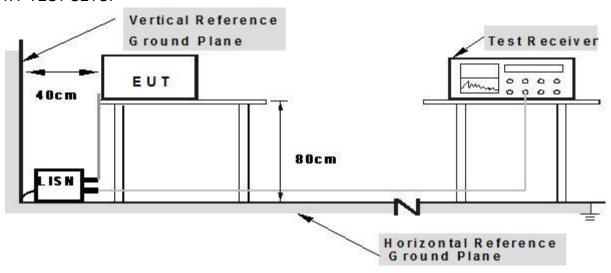
Testing is required at only one EUT supply voltage and frequency.

The term 'other' refers to all emissions other than the fundamental and the harmonics of the local oscillator.

The test shall be performed with the device operating at each reception channel.

The test shall cover the entire frequency range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

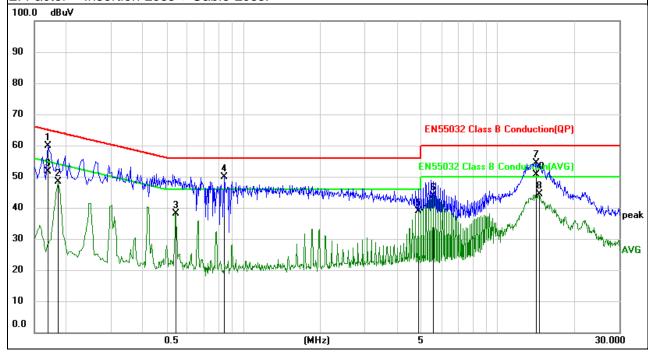
3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

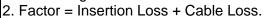

3.1.6TEST RESULTS

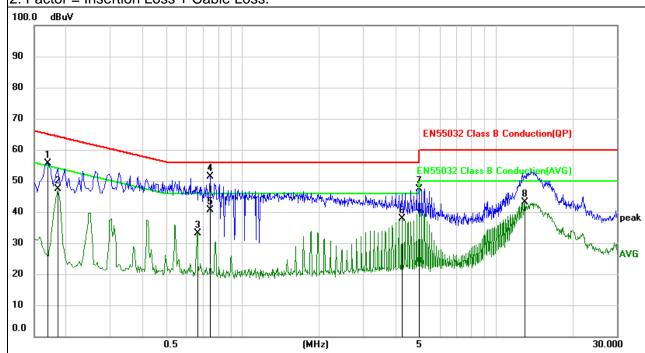
EUT:	EcoFlow STREAM AC Pro	Model Name. :	EF-EA-AC-P2K-1200
Temperature:	24.5℃	Relative Humidity:	59.0%
Pressure :	1010hPa	Phase :	L
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1700	39.24	20.63	59.87	64.96	-5.09	peak
0.1860	27.88	20.57	48.45	54.21	-5.76	AVG
0.5420	17.70	20.38	38.08	46.00	-7.92	AVG
0.8420	29.50	20.31	49.81	56.00	-6.19	peak
4.8620	18.38	20.43	38.81	46.00	-7.19	AVG
5.5820	23.32	20.44	43.76	50.00	-6.24	AVG
14.1420	33.72	20.54	54.26	60.00	-5.74	peak
14.4620	23.75	20.55	44.30	50.00	-5.70	AVG
0.1700	31.03	20.63	51.66	64.96	-13.30	QP
14.1420	30.03	20.54	50.57	60.00	-9.43	QP

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.




EUT:	EcoFlow STREAM AC Pro	IModel Name. :	EF-EA-AC-P2K-12 00
Temperature:	24.5℃	Relative Humidity:	59.0%
Pressure:	1010hPa	Phase :	N
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1700	35.06	20.63	55.69	64.96	-9.27	peak
0.1860	26.84	20.57	47.41	54.21	-6.80	AVG
0.6620	12.71	20.32	33.03	46.00	-12.97	AVG
0.7460	31.02	20.32	51.34	56.00	-4.66	peak
0.7460	20.21	20.32	40.53	56.00	-15.47	QP
4.2619	17.50	20.44	37.94	46.00	-8.06	AVG
4.9820	26.91	20.43	47.34	56.00	-8.66	peak
13.0219	22.65	20.52	43.17	50.00	-6.83	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

Note: The test modes were carried out for all operation modes. The worst test mode for test data was showed in the report.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)

Table A.2 – Requirements for radiated emissions at frequencies up to 1 GHz for Class A equipment

Table clause	Frequency range	Measurement		Class A limits $dB(\mu V/m)$	
oluuoo	MHz	Distance m	Detector type/ bandwidth	OATS/SAC (see Table A.1)	
A2.1	30 – 230	10		40	
	230 – 1 000	10	Quasi Peak /	47	
A2.2	30 – 230	2	120 kHz	50	
	230 – 1 000	3		57	

Apply only A2.1 or A2.2 across the entire frequency range.

Table A.4 – Requirements for radiated emissions at frequencies up to 1 GHz for Class B equipment

Table clause	Frequency range	Measurement		Class B limits dB(μV/m)	
orado	MHz	Distance Detector type/ m bandwidth		OATS/SAC (see Table A.1)	
A4.1	30 – 230	40	10 Quasi Peak / 120 kHz	30	
	230 – 1 000	10		37	
A4.2	30 – 230	3		40	
	230 – 1 000	3		47	

Apply only table clause A4.1 or A4.2 across the entire frequency range.

Table A.6 - Requirements for radiated emissions from FM receivers

Table	Frequency range	Measurement		Class B limit dB(μV/m)			
clause	MHz	Distance	Detector type/	Fundamental	Harmonics		
		m	bandwidth	OATS/SAC (see Table A.1)	OATS/SAC (see Table A.1)		
A6.1	30 – 230	10			42		
	230 – 300		10	10	10		50
	300 – 1 000		Quasi peak/		46		
A6.2	30 – 230		120 kHz		52		
	230 – 300	3		60	52		
	300 – 1 000				56		

Apply only A.6.1 or A.6.2 across the entire frequency range.

These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the local oscillator. Signals at all other frequencies shall be compliant with the limits given in Table A.4.

3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Table A.3 – Requirements for radiated emissions at frequencies above 1 GHz for Class A equipment

Table clause	Frequency range	Measurement		Class A limits $dB(\mu V/m)$	
ciaasc	MHz	Distance Detector type/ m bandwidth		FSOATS (see Table A.1)	
A3.1	1 000 – 3 000		Average /	56	
	3 000 – 6 000	•	1 MHz	60	
A3.2	1 000 – 3 000	3	Peak /	76	
	3 000 - 6 000		1 MHz	80	

Apply A3.1 and A3.2 across the frequency range from 1 000 MHz to the highest required frequency of measurement derived from Table 1.

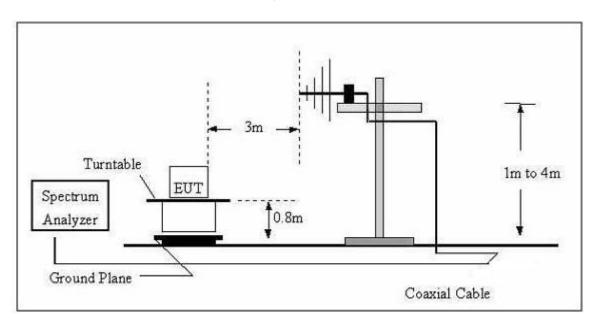
Table A.5 – Requirements for radiated emissions at frequencies above 1 GHz for Class B equipment

Table clause	Frequency range	Me	easurement	Class B limits dB(μV/m)
	MHz	Distance m	Detector type/ bandwidth	FSOATS (see Table A.1)
A5.1	1 000 – 3 000		Average/	50
	3 000 – 6 000	3	1 MHz	54
A5.2	1 000 – 3 000	3		70
	3 000 – 6 000		1 MHz	74

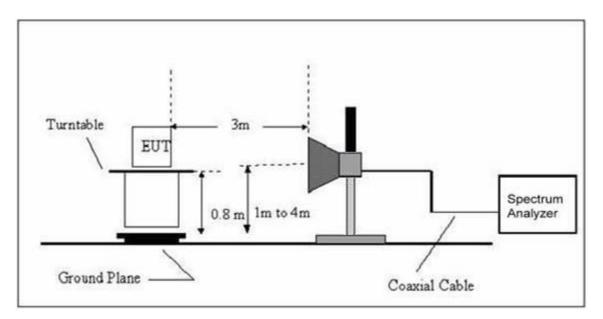
Apply A5.1 and A5.2 across the frequency range from 1 000 MHz to the highest required frequency of measurement derived from Table 1.

Notes:

- (1) The limit for radiated test was performed according to as following: CISPR 32.
- (2) The tighter limit applies at the band edges.
- (3) Emission level $(dB\mu V/m)=20log$ Emission level (uV/m).


3.2.3 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.



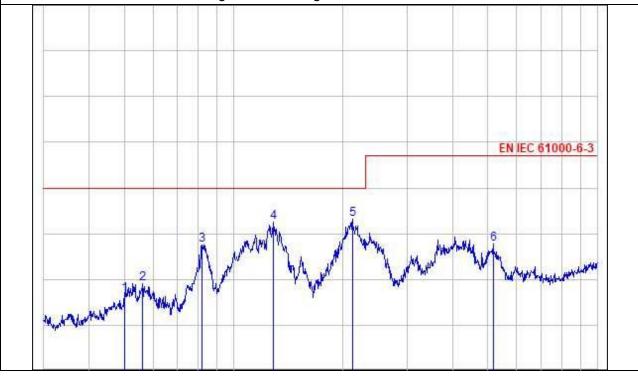
3.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1GHz

3.2.5EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

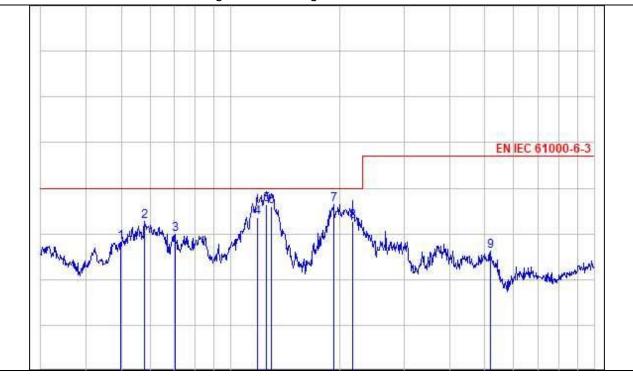

3.2.6TEST RESULTS (30-1000MHz)

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	22 ℃	Relative Humidity:	48.9%
Pressure:	1010 hPa	Polarization :	Horizontal
Test Power:	AC 230V/50Hz	Test Mode :	Mode 1

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
50.06	35.00	-18.30	16.70	40.00	-23.30	Peak
56.20	37.99	-18.82	19.17	40.00	-20.83	Peak
81.78	49.28	-21.66	27.62	40.00	-12.38	Peak
128.56	50.65	-18.04	32.61	40.00	-7.39	Peak
212.27	53.24	-20.15	33.09	40.00	-6.91	Peak
517.25	40.45	-12.76	27.69	47.00	-19.31	Peak

Remark:

1. Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.


Page 28 of 61 Report No.: S25022800704001

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature :	22℃	Relative Humidity:	48.9%
Pressure:	1010 hPa	Polarization :	Vertical
Test Power:	AC 230V/50Hz	Test Mode :	Mode 1

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
49.88	46.58	-18.29	28.29	40.00	-11.71	Peak
57.80	51.75	-19.02	32.73	40.00	-7.27	Peak
70.34	50.73	-20.92	29.81	40.00	-10.19	Peak
118.19	52.30	-18.77	33.53	40.00	-6.47	QP
125.45	54.63	-18.24	36.39	40.00	-3.61	QP
129.47	54.05	-17.98	36.07	40.00	-3.93	QP
191.75	56.36	-19.89	36.47	40.00	-3.53	QP

Remark:

1. Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.

Note: The test modes were carried out for all operation modes. The worst test mode for test data was showed in the report.

3.2.7TEST RESULTS(1000-6000MHz)

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	22℃	Relative Humidity:	48.9%
Pressure:	1010 hPa	Test Mode :	Mode 1
Test Power:	AC 230V/50Hz		
Result	PASS		

3.3 HARMONICS CURRENT

3.3.1LIMITS OF HARMONICS CURRENT

Table 1 – Limits for Class A equipment

Harmonic order (n)	Maximum permissible harmonic current (A)		
Odd ha	armonics		
3	2.3		
5	1.14		
7	0.77		
9	0.4		
11	0.33		
13	0.21		
15≤n≤39	0.15*(15/n)		
Even harmonics			
2	1.08		
4	0.43		
6	0.30		
8≤n≤40	0.23*(8/n)		

Note:Reference standard of the table above: EN61000-3-2.

3.3.2 TEST PROCEDURE

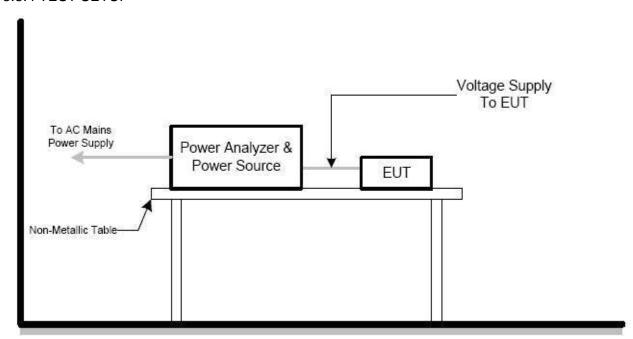
a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

b. The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.


Class D: Equipment having a specified power less than or equal to600W of the following types: Personal computers and personal computer monitors and televisionreceivers.

c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

3.3.3 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.4 TEST SETUP

3.3.5 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name:	EF-EA-AC-P2K-1200
Temperature:	20℃	Relative Humidity:	49%
Pressure:	1012hPa	Test duration:	150s
Classification:	Class A	Test Power:	AC 230V/50Hz
Test Mode:	Mode 1		
Result	PASS		

3.4VOLTAGE FLUCTUATION AND FLICKERS

3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS

Test items	Limits(EN61000-3-3)	Descriptions	
P _{st}	≤1.0, T _p =10min	short-term flicker indicator	
P _{lt}	≤0.65, T _p =2h	long-term flicker indicator	
d _c	≤3.3%	relative steady-state voltage change	
d _{max}	≤4%(or 6% _{Note(1)} , 7% _{Note(2)})	maximum relative voltage change:	
d _(t)	≤3.3%, no more than 500ms	relative voltage change characteristic	

Note:

- 1. 6 % for equipment which is:
 - a. switched manually, or
 - b. switched automatically more frequently than twice per day, and also has either adelayed restart (the delay being not less than a few tens of seconds), or manualrestart, after a power supply interruption.
- 2.7% for equipment which is
 - a. attended whilst in use (for example: hair dryers, vacuum cleaners, kitchenequipment such as mixers, garden equipment such as lawn mowers, portable toolssuch as electric drills), or b. switched on automatically, or is intended to be switched on manually, no more thantwice per day, and also has either a delayed restart (the delay being not less than afew tens of seconds) or manual restart, after a power supply interruption.

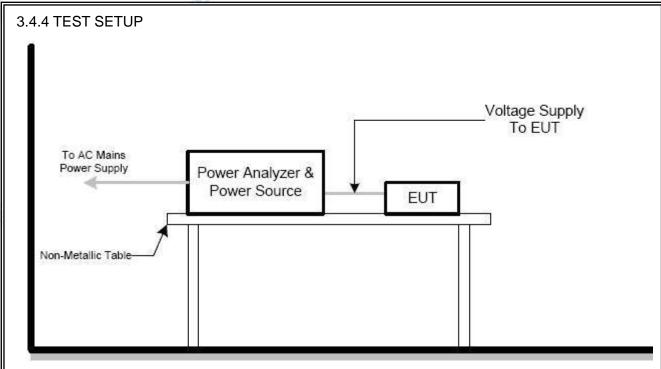
3.4.2 TEST PROCEDURE

a. Harmonic Current Test:

Test was performed according to the procedures specified in Sub-clause 6.2 of IEC/EN 61000-3-2 depend on which standard adopted for compliancemeasurement.

b. Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 6.0/4.0 of IEC/EN 61000-3-3 depend onwhich standard adopted for compliance measurement.


c. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

3.4.3 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Page 34 of 61 Report No.: S25022800704001

Page 35 of 61 Report No.: S25022800704001

3.4.5 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25 ℃	Relative Humidity:	45%
Pressure:	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode:	Mode 1		
Result	PASS		

4. EMC IMMUNITY TEST

4.1 GENERAL PERFORMANCE CRITERIA

4.1.1 PERFORMANCE CRITERIA

According to EN 55035 standard, the general performance criteria as following:

	The equipment shall continue to operate as intended without operator
	intervention. No degradation of performance or loss of function is allowed below a
	performance level specified by the manufacturer when the equipment is used as
	intended.
Criterion A	The performance level may be replaced by a permissible loss of performance. If
	the minimum performance level or the permissible performance loss is not
	specified by the manufacturer, then either of these may be derived from the
	product description and documentation, and by what the user may reasonably
	expect from the equipment if used as intended.
	After the test, the equipment shall continue to operate as intended without
	operator intervention. No degradation of performance or loss of function is
	allowed, after the application of the phenomena below a performance level
Criterion B	specified by the manufacturer, when the equipment is used as intended.
	The performance level may be replaced by a permissible loss of performance.
	During the test, degradation of performance is allowed. However, no change of
	operating state or stored data is allowed to persist after the test.
	Loss of function is allowed, provided the function is self-recoverable, or can be
	restored by the operation of the controls by the user in accordance with the
Criterion C	manufacturer's instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a
	battery backup, shall not be lost.

According to EN 301489-17 standard, the general performance criteria as following:

Criteria	During the test	After the test
А	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions	Shall operate as intended. Shall be no degradation of performance (see note 3). Shall be no loss of function. Shall be no loss of stored data or user programmable functions
В	May show loss of function (one or more). May show degradation of performance (see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable functions.
С	May be loss of function (one or more)	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).

NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

4.2GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

4.3ESD TESTING

4.3.1 TEST SPECIFICATION

	<u>, </u>					
Basic Standard:	IEC/EN 61000-4-2					
Discharge Impedance:	330 ohm / 150 pF					
Required Performance	В					
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV					
	Contact Discharge: 2kV/4kV (Direct/Indirect)					
Polarity:	Positive & Negative					
Number of Discharge:	Air Discharge: min. 20 times at each test point					
	Contact Discharge: min. 200 times in total					
Discharge Mode:	A/C Discharge					
Discharge Period:	1 second minimum					

4.3.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Indirect application of the discharge:

Vertical Coupling Plane (VCP):

At least 10 single discharges (in the most sensitive polarity) shall be applied to the centre of one vertical edge of the coupling plane. The coupling plane, of dimensions $0.5 \text{ m} \times 0.5 \text{ m}$, is placed parallel to, and positioned at a distance of 0.1 m from, the EUT.

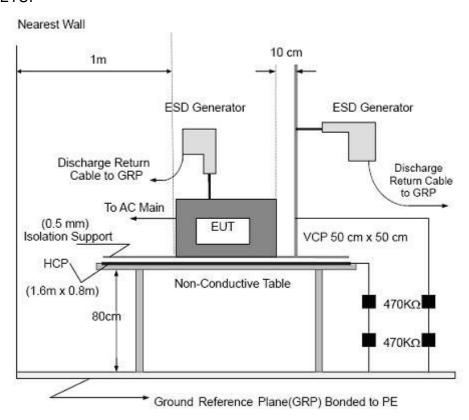
Discharges shall be applied to the coupling plane, with sufficient different positions such that the four faces of the EUT are completely illuminated. One VCP position is considered to illuminate $0.5 \text{ m} \times 0.5 \text{ m}$ area of the EUT surface.

Horizontal Coupling Plane (HCP):

Discharge to the HCP shall be made horizontally to the edge of the HCP.

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the centre point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

The discharge electrode shall be in contact with the edge of the HCP before the discharge switch is operated


b. Direct application of discharges to the EUT

The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied.

For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.

4.3.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.3.4 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode	Mode 1/2/3/4/5		

Mode		Cont							
Test level (kV)	Toot Doint	2	2	4	4	(6	Criterion	Result
Test Location	Test Point	+	ı	+	-	+	1		
	Front	Р	Р	Р	Р				
HCP	Rear	Р	Р	Р	Р				
ПСР	Left	Р	Р	Р	Р				
	Right	Р	Р	Р	Р			В	Complies
	Front	Р	Р	Р	Р			В	Compiles
VCP	Rear	Р	Р	Р	Р				
VCP	Left	Р	Р	Р	Р				
	Right	Р	Р	Р	Р				

Mode 4/5

Mode			Air	Dis	cha	rge			Contact Discharge					ge					
Test level(kV)	2	2	4	4	8	3	1	5	2	2	4	4	(6	8	3	Obser vation	Criterion	Result
Test Location	+	1	+	ı	+	ı	+	-	+	-	+	1	+	1	+	-			
Gap	Р	Ρ	Р	Р	Ρ	Ρ													
Button	Р	Р	Р	Р	Р	Р											TTTD	В	Complies
AC port	Р	Р	Р	Р	Р	Р											TT,TR	Б	Complies
Metal									Р	Р	Р	Р							

Mode 1/2/3

Mode	Air Discharge					Contact Discharge												
Test level(kV)	2	2	4	4	8	3	1	5	2	2	4	1	6	6	8	3	Criterion	Result
Test Location	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-		
Gap	Р	Р	Р	Р	Р	Р												
Button	Р	Ρ	Р	Р	Ρ	Ρ											В	Complies
AC port	Р	Р	Р	Р	Р	Р											Б	Complies
Metal									Р	Р	Р	Р						

Note:

- 1) +/- denotes the Positive/Negative polarity of the output voltage.
- 2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

4.4 RS TESTING

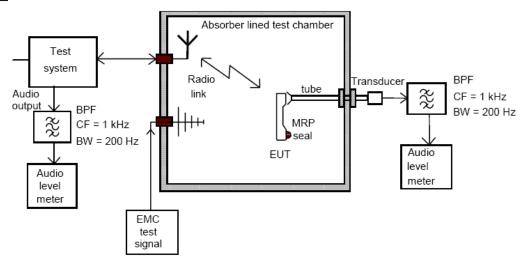
4.4.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-3
Required Performance	A
Frequency Range:	According to EN 301489-1:
	80 MHz - 6000 MHz ;
	According to EN 55035:
	80 MHz to 1000 MHz
	1800 MHz
	2600 MHz
	3500 MHz
	5000 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5 m
Dwell Time:	at least 3 seconds

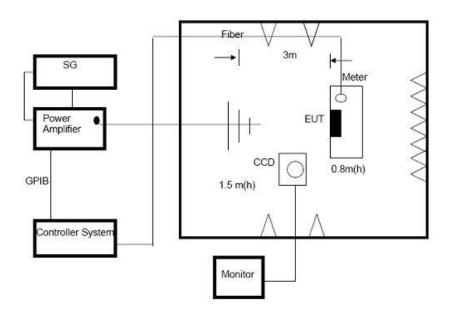
4.4.2 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.


The other condition as following manner:

- a. The field strength level was 3V/m.
- b. The frequency range is swept from 80 MHz to 6000 MHz, 1800 MHz, 2600 MHz, 3500 MHz, 5000MHzwith the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. Sweep Frequency 900 MHz, with the Duty Cycle:1/8 and Modulation: Pulse 217 Hz(if applicable)
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.



4.4.3 TEST SETUP

□ GeneralCommunication

Note:

For the actual test configuration, please refer to the related Item -EUT Test Photos.

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

4.4.4 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25℃	Relative Humidity:	45%
Pressure:	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode	Mode 1/2/3/4/5		

TEST RESULT

Mode 4/5

111000 170						
Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform. Criteria	Results
			Front			
90 1000	H/V	3 V/m (rms) AM Modulated	Rear	CTCD		Р
80~1000 H/	П/ V	1000Hz, 80%	Left	CT,CR	A	
			Right			

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform. Criteria	Results
			Front			
1000 6000	LI /\/	3 V/m (rms) AM Modulated	Rear	CTCD		P
1000~6000	1000~6000 H/V		Left	CT,CR	A	P
			Right			

Note:

1. The exclusion band has not been tested in 80MHz~6GHz.

The exclusion band for immunity testing of equipment operating in the 2,4 GHz band shall be: • lower limit of exclusion band = lowest allocated band edge frequency -120 MHz, i.e. 2 280 MHz; • upper limit of exclusion band = highest allocated band edge frequency +120 MHz, i.e. 2 603,5MHz.

2. "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Mode 1/2/3

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Perform. Criteria	Results
80~1000			Front		
1000~6000	İ	2 \//m (rmo)	Rear	A	
1800	ш /\/	3 V/m (rms) AM Modulated	Real		P
2600	H/V	1000Hz, 80%	l of4		
3500		1000112, 80%	Left		
5000			Right		

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Note:

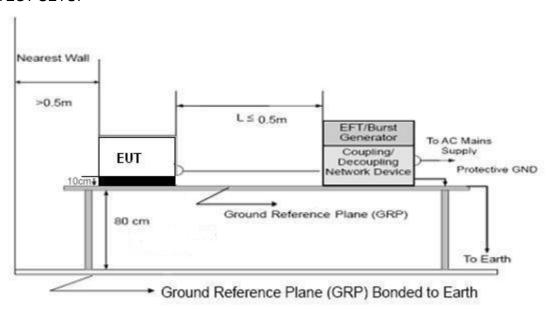
- 1) N/A denotes test is not applicable in this test report.
- 2) There was not any unintentional transmission in standby mode
- 3) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

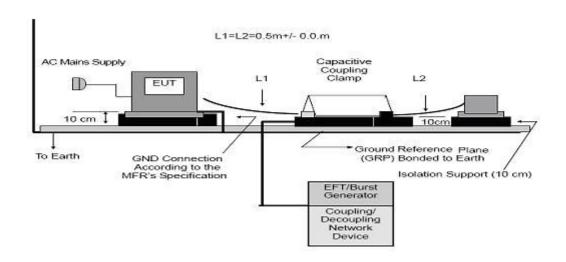
4.5 EFT/BURST TESTING

4.5.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-4
Required Performance	В
Test Voltage:	Power Line: 1 kV
	DC/Signal/wired network Line: 0.5 KV
Polarity:	Positive & Negative
Impulse Frequency:	For xDSL wired network ports: 100 kHz
	For DC/AC ports: 5 kHz
Impulse Wave shape :	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 1 min.

4.5.2 TEST PROCEDURE


The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.


The other condition as following manner:

- a. The length of power cord between the coupling device and the EUT should not exceed 1 meter.
- b. Both positive and negative polarity discharges were applied.
- c. The duration time of each test sequential was 1 minute
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.5.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

4.5.4 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode	Mode 1/2/3/4/5		

TEST RESULT

Mode 4/5

Cou	unling Line		Test level (kV)							Observation	Criterion	Result
Cot	upling Line	0.5		1		2		4		Observation	Cillenon	Result
		+	-	+	-	+	-	+	-			
	L	Р	Р	Р	Р							Complies
	N	Р	Р	Р	Р						В	Complies
AC	PE	Р	Р	Р	Р							Complies
line	L+N	Р	Р	Р	Р							Complies
	L+PE	Р	Р	Р	Р					TT,TR		Complies
	N+PE	Р	Р	Р	Р							Complies
	L+N+PE	Р	Р	Р	Р]		Complies
	OC Line											
Si	gnal Line											

Mode 1/2/3

Coupling Line				Te	est lev	∕el (k\	/)				
		0	0.5		1		2		1	Criterion	Result
		+	-	+	-	+	-	+	-		
	L	Р	Р	Р	Р						Complies
	N	Р	Р	Р	Р						Complies
PE	Р	Р	Р	Р						Complies	
AC line	L+N	Р	Р	Р	Р						Complies
	L+PE	Р	Р	Р	Р					В	Complies
	N+PE	Р	Р	Р	Р					1	Complies
	L+N+PE	Р	Р	Р	Р						Complies
DC Line									·	1	
Signa	al Line										

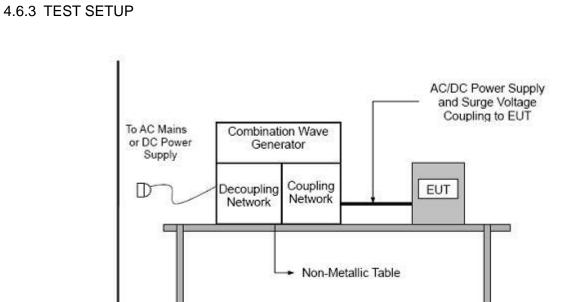
4.6 SURGE TESTING

4.6.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-5
Required Performance	В
Wave-Shape:	Combination Wave
	1.2/50 us Open Circuit Voltage
	8 /20 us Short Circuit Current
Test Voltage:	Power Line:0.5 kV, 1 kV, 2 kV
Surge Input/Output:	L-N, L-PE, N-PE
Generator Source:	2 ohm between networks
Impedance:	12 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0 /90/180/270
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points

4.6.2 TEST PROCEDURE

a. For EUT power supply:


The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

- b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT: The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT:
 - The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- d. For the actual test configuration, please refer to the related Item –EUT Test Photos.

52 of 61 Report No.: S25022800704001

4.6.4 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25℃	Relative Humidity:	45%
Pressure:	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode	Mode 1/2/3/4/5		

TEST RESULT

Mode 4/5

				Test level									
	Coupling Line		0.5	kV 1 kV		2 kV		4 kV		Observation	Criterion	Result	
			+	-	+	-	+	-	+	-			
		0°	Р	Р	Р	Р							
	L-N	90°	Р	Р	Р	Р							
	L-IV	180°	Р	Р	Р	Р							
		270°	Р	Р	Р	Р							Complies
		0°	Р	Р	Р	Р	Р	Р			TT,TR	В	
AC	L-PE 9	90°	Р	Р	Ρ	Ρ	Ρ	Р					
line	L-F C	180°	Р	Р	Ρ	Ρ	Ρ	Р			,		
		270°	Р	Р	Ρ	Ρ	Ρ	Р					
		0°	Р	Р	Р	Р	Р	Р					
	N-PE	90°	Р	Р	Р	Ρ	Ρ	Р					
	IN-F L	180°	Р	Р	Р	Р	Р	Р					
	270		Р	Р	Ρ	Ρ	Ρ	Р					
	DC Line												
	Signal Line)											

Mode 1/2/3

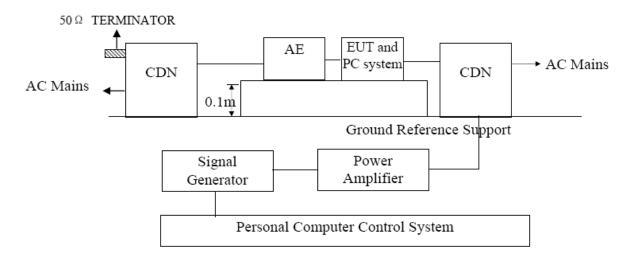
						Test	level						
Coupling Line		0.5 kV		1 kV		2 kV		4 kV		Criterion	Result		
			+	-	+	-	+	-	+	-			
		0°	Р	Р	Р	Р							
	I NI	90°	Р	Р	Р	Р							
	L-N	180°	Р	Р	Р	Р							
		270°	Р	Р	Р	Р							
	0°	Р	Р	Р	Р	Р	Р						
A C line	l DE	90°	Р	Р	Р	Р	Р	Р			В	Complies	
AC line	L-PE	180°	Р	Р	Р	Р	Р	Р					
		270°	Р	Р	Р	Р	Р	Р					
		0°	Р	Р	Р	Р	Р	Р					
	N DE	90°	Р	Р	Р	Р	Р	Р					
	N-PE	180°	Р	Р	Р	Р	Р	Р			1		
	270°	Р	Р	Р	Р	Р	Р						
DC Line													
	Signal Line	_											

4.7 INJECTION CURRENT TESTING

4.7.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-6
Required Performance	A
Frequency Range:	0.15 MHz - 80 MHz
Field Strength:	3 Vr.m.s.
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	at least 3 seconds

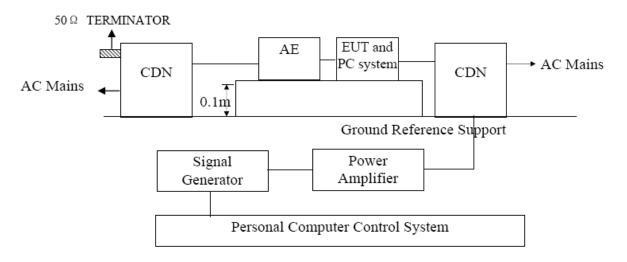
4.7.2 TEST PROCEDURE


The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:

- a. The field strength level was 3V.
- b. The frequency range is swept from 150 KHz to 80 MHz, with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.7.3 TEST SETUP


☐ Mobile Communication

1 kHz Test test ource system Transducer Radio **BPF** tube link CF = 1 kHz 0 dBPa BPF BW = 200 Hz CF = 1 kHz -5 dBPa BW = 200 Hz **EUT** 1 kHz Audio test level Audio source meter level meter

⊠GeneralCommunication

For the actual test configuration, please refer to the related Item –EUT Test Photos.

NOTE:

FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

4.7.4 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25 ℃	Relative Humidity:	45%
Pressure:	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode	Mode 1/2/3/4/5		

TEST RESULT

Mode 4/5

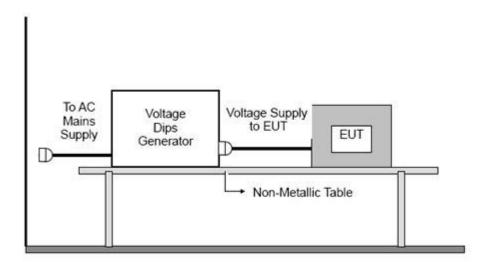
Test Ports (Mode)	Freq. Range (MHz)	Field Strength	Observation	Perform. Criteria	Results
Input/ Output AC. Power Port	0.1580	2)//rmo)	CT, CR	Α	Р
Input/ Output DC. Power Port	0.15 80	3V(rms) AM Modulated	N/A	N/A	N/A
Signal Line	0.15 80	1000Hz, 80%	N/A	N/A	N/A

Mode 1/2/3

Test Ports (Mode)	Freq. Range (MHz)	Field Strength	Perform. Criteria	Results
Input/ Output AC. Power Port	0.1580	2) // rm c)	A	Р
Input/ Output DC. Power Port	0.15 80	3V(rms) AM Modulated	N/A	N/A
Signal Line	0.15 80	1000Hz, 80%	N/A	N/A

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

4.8 VOLTAGE INTERRUPTION/DIPS TESTING


4.8.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-11
Required Performance	100% reduction, 0.5 Cycle 100% reduction, 1.0 Cycle
	, , ,
	30% reduction, 25 Cycles 30% reduction, 0.5 Cycle
Voltage Interruptions:	100% reduction, 250 Cycles
Test Duration Time:	Minimum three test events in sequence
Interval between Event:	Minimum ten seconds
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°
Test Cycle:	3 times

4.8.2 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

4.8.3 TEST SETUP

For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.8.4 TEST RESULTS

EUT:	EcoFlow STREAM AC Pro	Model Name :	EF-EA-AC-P2K-1200
Temperature:	25 ℃	Relative Humidity:	45%
Pressure:	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode	Mode 1/2/3/4/5		

TEST RESULT

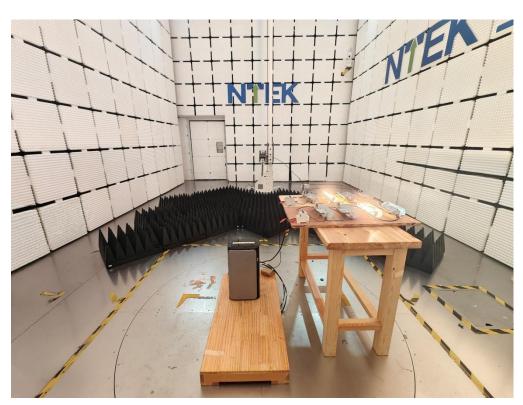
Mode 4/5

Voltage Reduction	Duration (ms)	Observation	Perform Criteria	Results
Voltage dip: 0%	10	TT, TR	В	Р
Voltage dip: 0%	20	TT, TR	В	Р
Voltage dip: 70%	500	TT, TR	С	Р
Voltage interruptions: 0%	5000	TT, TR	С	Р

Mode 1/2/3

Voltage Reduction	Duration (ms)	Perform Criteria	Results
Voltage dip: 0%	10	В	Р
Voltage dip: 0%	20	В	Р
Voltage dip: 70%	500	С	Р
Voltage interruptions: 0%	5000	С	Р

Note:


- 1) There was not any unintentional transmission in standby mode
- 2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

5. EUT TEST PHOTO


Radiated Measurement Photo

Conducted Measurement Photo

END OF REPORT